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In the past decade cancer research has recognized the importance of tumorstroma interactions for the progression of primary
tumors to an aggressive and invasive phenotype and for colonization of new organs in the context of metastasis. The dialogue
between tumor cells and the surrounding stroma is a complex and dynamic phenomenon, as many cell types and soluble factors
are involved. While the function of many of the players involved in this cross talk have been studied, the regulatory mechanisms and
signaling pathways that control their expression haven’t been investigated in depth. By using a novel, interdisciplinary approach
applied to the mechanism of action of the metastasis suppressor, Raf kinase inhibitory protein (RKIP), we identified a signaling
pathway that suppresses invasion and metastasis through regulation of stroma-associated genes. Conceptually, the approach we
developed uses a master regulator and expression arrays from breast cancer patients to formulate hypotheses based on clinical
data. Experimental validation is followed by further bioinformatic analysis to establish the clinical significance of discoveries.
Using RKIP as an example we show here that this multi-step approach can be used to identify gene regulatory mechanisms that
affect tumor-stroma interactions that in turn influence metastasis to the bone or other organs.

1. Introduction

Under normal physiological conditions, the stromal com-
partment of epithelial tissue regulates homeostasis by main-
taining the proper architecture and nutrient levels required
for epithelial function. It also serves as an important barrier
to cell transformation. However in response to lesions (i.e.,
wounding) the stromal compartment undergoes changes
including the recruitment and activation of fibroblasts,
immune, and endothelial cells that in turn provide growth,
and matrix remodeling factors, as well as a new blood supply.
Similar changes in the stromal compartment have been
shown to occur during tumor growth and the importance
of the stromal compartment, called “the tumor microen-
vironment,” in modulating and driving cancer progression
has become increasingly evident [1]. The tumor microen-
vironment has become the subject of intense therapeutic
and prognostic interest as its phenotypic and molecular

characteristics have been correlated with disease-free survival
in multiple tumor types [2].

It is believed that during the first phase of carcinogenesis
the tumor microenvironment initially reacts to suppress ma-
lignant transformation by maintaining tissue architecture
and differentiation. As cancer progresses, however, the local
stromal compartment shifts to an activated, growth-promot-
ing state, in many ways similar to an inflammatory state,
which is initiated and maintained by continuous paracrine
communication between stromal and tumor cells. Stromal
components engage in a dynamic signaling circuit with pri-
mary tumor cells and coevolve with tumor cells to promote
tumor progression to an invasive phenotype [3]. Various
stromal components, including vascular cells, pericytes, fib-
roblasts, inflammatory cells, and extracellular matrix com-
ponents participate in this cycle [4, 5]. A large number of
activated myofibroblasts, characterized by the expression of
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α-smooth muscle actin (α-SMA), are frequently found in
the stroma of human breast carcinoma and are referred
to as carcinoma-associated fibroblasts (CAFs). The precise
cellular origin of these activated myofibroblasts is not clear
but it has been shown that when inoculated with carcinoma
cells, CAFs can promote tumor growth in mouse xenograft
models [6]. CAFs secrete high levels of stromal cell-derived
factor-1 (SDF-1 or CXCL12), a chemokine that can activate
its cognate receptor, CXCR4, which is expressed by many
carcinoma cells, and stimulate their proliferation. On the
other hand SDF-1 can mediate recruitment of endothelial
progenitor cells thus promoting angiogenesis, and it has also
been implicated in an autocrine signaling loop that promotes
differentiation of normal stromal fibroblasts into myofib-
roblasts [7].

A number of other cytokines, chemokines, and growth
factors secreted by cancer cells themselves or by tumor-as-
sociated stromal cells have been shown to sustain tumor
cell proliferation and progression through different mech-
anisms. The list of these autocrine/paracrine factors is
constantly growing and includes vascular endothelial growth
factor (VEGF), fibroblast growth factor (FGF), transforming
growth factor-β (TGF-β), hepatocyte growth factor (HGF),
interleukin-6 (IL-6), and osteopontin (OPN) [8]. An impor-
tant component of this signaling loop is the recruitment and
activation of bone marrow-derived myeloid cells (BMDCs),
including macrophages, monocytes, mast cells, and neu-
trophilis. BMDCs have been shown to play a major role in
the development and growth of the primary tumor and also
in the subsequent hematological dissemination [9]. BMDCs
can in fact contribute to the induction of angiogenesis by
activating endothelial cells and are recognized as major deter-
minants of tumor invasion. Secretion of different classes of
proteases (matrix metalloproteinases, cathepsins, and serine
proteases), produced by stromal and/or tumor cells, has been
shown to facilitate cancer cell migration by disrupting cell-
cell junctions and promoting invasion of the surrounding
tissues by proteolytic degradation of the extracellular matrix
(ECM) and the basement membrane.

Metastasis is the primary cause of mortality in breast can-
cer patients and can emerge many years after the removal of
the primary tumor. Metastastic progression is a complicated
multistep process which includes at least three discrete stages:
(1) epithelial-mesenchymal transition (EMT) leading to
migration, invasion, and intravasation; (2) circulation, trans-
portation, and extravasation of cells, which then undergo
mesenchymal-epithelial transition (MET); (3) colonization
of tumor cells within distal tissues including bone and
lung [10]. The efficiency of each of these steps on the way
to metastasis is highly affected by interactions with a dis-
tinct local microenvironment. Cancer cells interact with an
activated stroma during the initial phases of invasion and in-
travasation, with the bloodstream during hematological dis-
semination, and finally with the metastatic sites during extra-
vasation and colonization. It is generally believed that each of
these stages is highly inefficient, and, in particular, only a very
small percentage of the tumor cells that enter the circulatory
system are able to colonize and form a tumor at distal sites.
This concept highlights the fact that healthy tissues exert

a protective function toward invading cancer cells and ensure
that order is preserved within the tissue through homeostatic
mechanisms. Cancer cells that escape this protective function
and are able to modify the surrounding stroma to their own
advantage are the ones that will eventually succeed in colon-
izing new organs.

Many studies have highlighted the concept of tissue
tropism: although the blood flow pattern certainly con-
tributes to preferred metastatic sites of specific carcinomas,
the complex molecular mechanism of homing metastatic
cells is also determined by interactions with the microenvi-
ronment at target organs. A number of molecular mediators
of this interaction have been revealed by recent publications,
and gene expression profiling studies have generated distinct
gene expression signatures for organ-specific metastatic
variants [10–13]. A major role in the tropism of metastatic
cells to different organs is exerted by chemokines and their
cognate receptors [14]. Local expression in target tissues is
believed to guide metastatic cells to specific destinations as
a result of local chemotaxis in combination with induction
of invasive properties. As a homing mechanism, metastatic
breast cancer cells specifically express functional CXCR4 and
CCR7 receptors that induce actin polymerization, formation
of pseudopodia, and chemotaxis for directional migration
[14]. Interestingly, their respective ligands SDF-1 and CCL21
are mainly distributed in organs that represent the main site
of breast cancer metastasis, in particular bone.

Breast cancers metastasize to lung, liver, bone, and brain.
Bone metastasis is very common among late-stage breast
cancer patients but current treatment methods for bone
metastasis are mainly palliative, and more effective disease-
modifying therapies are needed. Breast cancer frequently
generates osteolytic bone metastasis by secreting a series of
growth factors that influence bone matrix and bone stromal
cells, tipping the balance to osteolytic bone destruction. In
this context tumor-derived factors include angiogenic factors
(FGF and VEGF), mediators of immune cell recruitment and
activation (TGFβ and TNFα), and mediators of fibroblasts
activation (FGF and TGFβ). Moreover cancer cells promote
bone degradation by direct secretion of metalloproteinases
(such as MMP1) and collagenase I or through indirect mech-
anisms by activating osteoclasts. Other tumor-derived cytok-
ines and cell surface/ECM proteins like bone morphogenetic
protein (BMP), interleukin-11 (IL-11), osteopontin (OPN),
and endothelin-1 participate and feed this vicious cycle.
In this scenario bone reabsorption by osteoclasts releases
a number of growth factors embedded in the bone matrix
including insulin-like growth factors (IGFs), TGF-β, platelet-
derived growth factor (PDGF), and BMP which become part
of this signaling circuit that push osteolytic lesions.

Gene expression profiling of a bone-tropic subpopula-
tion of the breast cancer cell line MDA-MB-231 has revealed
a “bone metastasis signature” (BMS) [11]. As expected, the
most highly overexpressed genes in the BMS encode mostly
cell surface and secreted proteins that alter the bone micro-
environment in order to facilitate growth of metastases and
formation of osteolytic bone lesions as described above. The
BMS includes OPN, connective tissue growth factor (CTGF),
fibroblast growth factor 5 (FGF5), the osteoclast-activating
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cytokine IL-11, CXCR4, and MMP1 as well as many other
genes. Expression of these genes in the primary tumor has
multiple functions including: (i) targeting cells specifically
to the bone microenvironment via homing factor CXCR4;
(ii) facilitating colonization of the bone via expression
of bone extracellular matrix degrading enzymes (MMP1,
ADAMTS1); (iii) activating osteoclasts and favoring adhe-
sion to the bone surface through OPN [15]. Overexpression
of individual genes in the signature led to only a marginal
increase in bone metastasis, whereas coexpression of multiple
genes dramatically increases both the rate and incidence of
bone metastasis [11]. This concept implies that these genes
cooperate to push the metastatic phenotype and may not be
highly effective if isolated from their signaling context. This
observation also highlights the importance of understanding
the master molecular mechanisms that regulate expression
of genes in order to develop target therapies that affect their
combined expression rather than an isolated component.

2. RKIP Defines Ways to Suppress
Invasion and Metastasis

To understand the mechanisms by which metastasis is reg-
ulated, we have focused on identifying key signaling path-
ways that can inhibit breast cancer metastasis to the bone.
Metastasis suppressors define a class of proteins that do not
affect primary tumor growth but instead regulate one or
more steps in the process leading to metastasis: invasion, in-
travasation, circulation, extravasation, and colonization of
the secondary site [16]. Raf kinase inhibitory protein (RKIP)
was initially shown to function as a metastasis suppressor in
a prostate xenograft mouse model [17]. More recently, we
have shown that RKIP also suppresses metastatic progression
to bone in breast tumor xenografts [18]. Furthermore, we
demonstrated that RKIP inhibits breast cancer invasion,
intravasation, and bone metastasis via a signaling pathway
involving induction of the microRNA let-7. Specifically,
inhibition of the Raf/MEK/MAP kinase cascade by RKIP
leads to inhibition of Myc activation. Myc is a transcriptional
activator of LIN28, which in turn inhibits let-7 maturation.
Consistent with the role of this signaling cascade, LIN28 has
been implicated in breast cancer progression and let-7 func-
tions as an inhibitor of breast tumor formation [19]. We also
showed that let-7 inhibits invasion in part via suppression
of the chromatin remodeling factor high mobility group AT-
hook 2 (HMGA2). HMGA2 in turn activates Snail, a tran-
scription factor that promotes the epithelial-mesenchymal
transition (EMT), a process that favors the acquisition of an
invasive phenotype. To understand how this upstream sig-
naling cascade regulates genes that are involved in the cross-
talk with the tumor microenvironment, thus affecting breast
cancer metastasis to the bone, we sought to identify relevant
metastatic genes that function downstream of the RKIP/let-7
axis.

As a means of identifying signaling pathways down-
stream of a key metastasis regulator in cancer, the Rosner and
Minn groups developed a novel interdisciplinary approach
that utilizes clinical data from breast tumors to generate

and test hypotheses [20]. The basic idea is to determine
whether a discrete set of genes are targets of inhibition by a
metastasis suppressor, in this case RKIP. If RKIP inhibits ex-
pression of these genes, then their expression levels in breast
tumors should inversely correlate with RKIP expression.
Once we identified genes that inversely correlate with RKIP
in patients’ tumors, we tested them experimentally in vitro
using breast tumor cell lines and in vivo using a xenograft
mouse model. Finally, having determined which genes
regulate metastasis in experimental breast tumor models, we
validated their clinical significance by further bioinfomatic
analysis using independent breast tumor data.

Using this approach, we identified a number of RKIP-
regulated let-7 targets including HMGA2 and a novel target,
BTB-and-CNC homology 1 (BACH1). A leucine zipper
transcription factor, BACH1, has been linked previously to
senescence and heme oxidation but has never been correlated
to cancer progression [21]. Experimental validation using a
xenograft mouse model confirmed that RKIP and let-7 sup-
press BACH1 and HMGA2 expression and showed that
BACH1 promotes invasion, intravasation, and bone metas-
tasis of breast cancer cells.

To test the hypothesis that RKIP is a potential regulator
of genes implicated in the development of bone metastasis,
we performed a similar bioinformatic analysis. We initially
determined whether RKIP expression inversely correlates to
the expression of bone metastasis signature (BMS) genes
[11]. We assembled several cohorts of primary breast tumor
expression array data and performed gene set analysis (GSA)
correlating the expression levels of the set of BMS genes to
RKIP expression. As expected, we found a negative corre-
lation between RKIP and BMS genes in two independent
gene expression data sets of 443 and 871 breast cancer
patients [20]. Thus, when RKIP is expressed, BMS genes
show low expression levels and vice versa. Having found a
significant correlation, we experimentally tested five genes
that were previously implicated as promoting breast tumor
bone metastasis by regulating interactions of cancer cells with
the stroma. Of these, we were able to demonstrate that RKIP
inhibits expression of MMP-1, CXCR4, and OPN thus af-
fecting the ability of metastatic cells to create an osteolytic
bone environment via crosstalk with stromal cellular and
noncellular components.

Finally, we determined experimentally the relationship
between RKIP, let-7, the two let-7 targets, HMGA2 and
BACH1, and the three BMS genes. Interestingly, knockdown
of BACH1 suppressed the BMS genes MMP1 and CXCR4
but not OPN while HMGA2 knockdown suppressed CXCR4,
and OPN but not MMP1. Additionally, we could partially
reverse the effects of HMGA2 and BACH1 knockdown on
invasion and metastasis by overexpressing their target BMS
genes MMP1, CXCR4 and OPN. The simultaneous overex-
pression of the three BMS genes together showed a more pro-
found effect on the metastatic phenotype compared to the
overexpression of a single gene. These results suggest that the
coordinate regulation of genes with different metastasis-pro-
moting functions is a prerequisite for efficient metastatic
spread.
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Figure 1: Schematic representation of the RKIP signaling pathway and its effects on metastatic progression to the bone.

Having determined which genes regulate metastasis in
experimental breast tumor models, we defined a signaling
pathway signature termed the RKIP pathway metastasis sig-
nature (RPMS) that we could use to further validate the clini-
cal significance of our findings [20]. While typical gene ex-
pression signatures do not implicate any regulatory relation-
ship between the genes in the signatures, the RPMS is based
upon experimentally validated regulatory relationships be-
tween the components of the pathway. Bioinfomatic analysis
using breast tumor data showed that the complete RPMS can
predict greater risk for metastasis in patients. By contrast, the
individual genes in the RPMS pathway were unable to predict
metastasis-free survival. Taken together, these results high-
light the importance of evaluating both regulators of tumor
metastasis as well as genes that interact with the cellular sig-
naling environment in order to be able to predict metastatic
risk.

3. Significance

The results described here reveal a novel regulatory mecha-
nism, controlled by the RKIP signaling pathway, that modu-
lates the dialogue between breast tumor cells and the micro-
environment and affects metastatic progression to the bone
(Figure 1). Specifically, recent studies demonstrate that
BACH1 and HMGA2 are key targets for inhibition by the
RKIP signaling pathway via a let-7-dependent mechanism.
Furthermore, BACH1 and HMGA2 promote the develop-
ment of bone metastasis by inducing expression of genes
(MMP1, CXCR4, and OPN) that regulate properties of the
stromal compartment at the target organ site. Finally, since
OPN is regulated exclusively by HMGA2 and MMP1 by
BACH1, the signaling pathways downstream of RKIP exhibit

a degree of specificity. While the function of these genes has
been studied extensively in the past in the context of metas-
tasis, the regulatory mechanisms and signaling pathways that
control their expression were thus far incompletely inves-
tigated. The ability to manipulate a set of bone metastasis
genes through a common upstream regulator such as RKIP
reveals potential therapeutic targets that could have a pro-
found impact on prevention of metastasis in breast cancer
patients.

Authors’ Contribution

E. Bevilacqua and C. A. Frankenberger contributed equally
to this work.

Acknowledgments

The work described here was supported by NIH Grants
NS33858 and CA112310 to M. R. Rosner. The authors thank
Eva Eves for helpful comments.

References

[1] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the
next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.

[2] G. Finak, N. Bertos, F. Pepin et al., “Stromal gene expression
predicts clinical outcome in breast cancer,” Nature Medicine,
vol. 14, no. 5, pp. 518–527, 2008.

[3] G. P. Gupta and J. Massagué, “Cancer metastasis: building a
framework,” Cell, vol. 127, no. 4, pp. 679–695, 2006.

[4] J. A. Joyce and J. W. Pollard, “Microenvironmental regulation
of metastasis,” Nature Reviews Cancer, vol. 9, no. 4, pp. 239–
252, 2009.



International Journal of Breast Cancer 5

[5] K. Polyak, I. Haviv, and I. G. Campbell, “Co-evolution of tu-
mor cells and their microenvironment,” Trends in Genetics,
vol. 25, no. 1, pp. 30–38, 2009.

[6] A. Orimo, P. B. Gupta, D. C. Sgroi et al., “Stromal fibroblasts
present in invasive human breast carcinomas promote tumor
growth and angiogenesis through elevated SDF-1/CXCL12
secretion,” Cell, vol. 121, no. 3, pp. 335–348, 2005.

[7] Y. Kojima, A. Acar, E. N. Eaton et al., “Autocrine TGF-β
and stromal cell-derived factor-1 (SDF-1) signaling drives the
evolution of tumor-promoting mammary stromal myofibrob-
lasts,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 107, no. 46, pp. 20009–20014,
2010.

[8] N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fib-
roblasts in cancer initiation and progression,” Nature, vol. 432,
no. 7015, pp. 332–337, 2004.

[9] D. Gao and V. Mittal, “The role of bone-marrow-derived
cells in tumor growth, metastasis initiation and progression,”
Trends in Molecular Medicine, vol. 15, no. 8, pp. 333–343, 2009.

[10] D. X. Nguyen and J. Massagué, “Genetic determinants of can-
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